An Approximation of the Analytical Solution of the Jeffery-Hamel Flow by Homotopy Analysis Method
نویسنده
چکیده
Paper the Jeffery-Hamel flow-a nonlinear equation of 3rd order-is studied by homotopy perturbation method. After introducing homotopy perturbation method and the way of obtaining Adomian’s polynomial, we solved the problem for divergent and convergent channel. Finally, velocity distribution and shear stress constant is depicted at various Reynolds numbers and comparing our results with some earlier works, illustrated their excellent accuracy.
منابع مشابه
Analysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملAnalytical Investigation of Jeffery-hamel Fow with High Magnetic Field and Nano Particle by RVIM
Many researchers have been interested in application of mathematical methods to find analytical solutions of nonlinear equations and for this purpose, new methods have been developed. One of the newest analytical methods to solve nonlinear equations is Reconstruction of variational Iteration Method (RVIM) which is an accurate and a rapid convergence method in finding the approximate solution fo...
متن کاملAnalytical Investigation of MHD Jeffery–Hamel Nanofluid Flow in Non-Parallel Walls
In this paper, Homotopy perturbation method (HPM) has been applied to investigate the effect of magnetic field on Cu-water nanofluid flow in non-parallel walls. The validity of HPM solutions were verified by comparing with numerical results obtained using a fourth order Runge–Kutta method. Effects of active parameters on flow have been presented graphically. The results show that velocity i...
متن کاملJeffery Hamel Flow of a non-Newtonian Fluid
This paper presents the Jeffery Hamel flow of a non-Newtonian fluid namely Casson fluid. Suitable similarity transform is applied to reduce governing nonlinear partial differential equations to a much simpler ordinary differential equation. Variation of Parameters Method (VPM) is then employed to solve resulting equation. Same problem is solved numerical by using Runge-Kutta order 4 method. A c...
متن کاملAn efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کامل